Im Rahmen des Eurostars-Projekts „PICWeld“ entwickelten Forschende des Fraunhofer IZM in Zusammenarbeit mit den Partnern LioniX International BV, Phix Photonics Assembly und ficonTEC Service GmbH, ein klebstofffreies, platzsparendes und robustes Laserschweißverfahren zur Fixierung von Glasfasern an PICs. Durch die Integration des Verfahrens in eine automatisierte Justageanlage wurde die industrielle Reife des Systems gezeigt, was die Glas-Glas-Verbindungstechnik für einen kommerziellen Einsatz sehr attraktiv macht.
Schon lange ist bekannt, dass biochemische Prozesse von Organfunktionen über die Temperaturregulierung bis hin zur Hormonproduktion maßgeblich von Licht beeinflusst werden. Inzwischen ist die Forschung rund um Licht und Körper weit vorangeschritten, junge Disziplinen wie die Life Science und Biophotonik beschäftigen sich mit Fragen, die sich am Schnittpunkt der Naturwissenschaften und Medizin befinden. Mit hochpräzisen und komplexen Messungen können damit Informationen darüber gewonnen werden, wie sich die Wechselwirkungen zwischen Licht und Materie gestalten, zum Beispiel bei der Untersuchung der Struktur von Zellen und Geweben, die für Krebserkrankungen relevant sind.
Doch Einblicke in das Innerste zu erhalten, ist kein leichtes Unterfangen: Kürzlich wurden miniaturisierte Systeme basierend auf photonisch integrierten Schaltkreisen mit hochstabilen Faserverbindungen vorgeschlagen, um die Rolle des sichtbaren Lichts in biologischen Prozessen nachvollziehen zu können. Genau an dieser Stelle setzte das Fraunhofer IZM im BMBF-geförderten Eurostars-Projekt „PICWeld“ an und entwickelte ein gänzlich neuartiges Laserschweißverfahren, mit dem optische Fasern direkt mit PICs auf Quarzglas verschweißt werden können. Mit Hilfe des Partners ficonTEC Service GmbH wurde dieses Verfahren in einer automatischen Anlage umgesetzt, die eine hohe Reproduzierbarkeit und Skalierbarkeit bietet.
Das Forschungsteam rund um Dr. Alethea Vanessa Zamora Gómez hat es sich zur Aufgabe gemacht, Glas-Glas-Verbindungen einfacher, robuster und langlebiger aufzubauen. Solche Verbindungen werden in der Fachwelt der Optik bereits genutzt, jedoch weisen konventionelle Lösungen einen erheblichen Nachteil auf: Zumeist werden die diskreten optischen Bauteile mit einem Klebstoff verbunden. Durch die Weichheit des Klebstoffs kann sich die Position des Bauteils über die Zeit ändern, zudem stellt er eine Störstelle zwischen den beiden Glasschichten dar, die eine Dämpfung des Signals verursacht und nach Alterung des Klebstoffs brüchig werden kann. Die Langzeitstabilität ist daher oft kritisch. Um diese Nachteile der Verbindungstechnik zu umgehen, haben die Forschenden einen Prozess des CO2-Laserschweißens entwickelt und realisieren damit erstmals eine direkte, thermisch robuste und transparente Glas-Glas-Verbindung.
Um das Laserschweißen für zuverlässige Quarzglasverbindungen jedoch nicht nur experimentell durchzuführen, sondern der Industrialisierung und hohen Skalierbarkeit einen Schritt näher zu kommen, wurde eine gänzlich neue, automatisierte Prozessanlage entworfen und hergestellt.
Die entstandene Anlage ermöglicht eine im Interface klebstofffreie und polarisationserhaltende, hocheffiziente Kopplung zwischen optischen Quarzglas-Fasern und Quarzglas-PICs mit integrierten Wellenleitern. Doch bis zur Umsetzung anwendungstauglicher Verbindungen mussten die Forschenden eine Reihe technologischer Herausforderungen bewältigen. Da Glasfasern und Substrate unterschiedliche Volumina haben, sind auch die Wärmekapazitäten der beiden Fügepartner ungleich. Diese Diskrepanz resultiert in einem stark unterschiedlichen Aufheiz- und Abkühlverhalten, was z. B. zu Deformationen oder Rissen beim Abkühlen führen kann. Die Lösung der Photonik-Expert*innen lag darin, das Substrat mittels eines separaten und individuell anpassbaren Lasers homogen vorzuheizen, so dass die Schmelzphase der Faser und des Substrats dennoch gleichzeitig erreicht wird.
Die Anlage, die mit thermischer Prozessüberwachung bis 1300 °C, einem bis auf 1 µm genauen Positioniersystem, einem Bilderkennungsverfahren sowie einer Steuerungssoftware ausgestattet ist, schweißte bereits im Laufe des Projekts erste Verbindungen, so dass die Funktionsfähigkeit getestet und erste prozessorientierte Messungen durchgeführt wurden.
Nach dem PICWeld-Abschluss im Jahr 2021 ergaben sich nahtlos erste Folgeprojekte, in denen die neue Technologie zum Faserkoppeln von Kollimatoren, Wellenleiterchips und Multilinsenarrays genutzt wurde. „Mit unserer Anlage zum CO2-Laserschweißen haben wir das bisherige Verfahrensprinzip erweitert: Insbesondere das hohe Automatisierungspotenzial ermöglicht es den Kund*innen, PICs mit höchster Kopplungseffizienz zu verwenden. In der Industrie integriert, bedeutet das einen Sprung für die Anwendungsbereiche der Biophotonik, aber auch der Quantenkommunikation und Hochleistungsphotonik“, erklärt die Projektleiterin am Fraunhofer IZM, Dr. Alethea Vanessa Zamora Gómez.
Der Beitrag des Fraunhofer IZM in PICWeld wurde gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) mit dem Förderkennzeichen 01QE1744C. Es gehört zum Eurostars-Programm (11324), in dessen Rahmen eine Zusammenarbeit mit Lionix International BV, Phix Photonics Assembly und ficonTEC Service GmbH erfolgt ist.
Das Fraunhofer IZM ist weltweit führend bei der Entwicklung und Zuverlässigkeitsbewertung von Technologien für die Aufbau- und Verbindungstechnik von zukünftiger Elektronik. Hierdurch entstehen Eigenschaften, die bislang eher untypisch für Mikroelektronik sind: zum Beispiel wird sie dehn- oder waschbar, hochtemperaturbeständig oder extrem formangepasst. Die Forschenden des Fraunhofer IZM setzen dabei ebenso Maßstäbe für die Umweltverträglichkeit von Elektronik.
Die Fraunhofer-Gesellschaft mit Sitz in Deutschland ist die weltweit führende Organisation für anwendungsorientierte Forschung. Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt sie eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft. Die 1949 gegründete Organisation betreibt in Deutschland derzeit 75 Institute und Forschungseinrichtungen. Rund 29.000 Mitarbeiterinnen und Mitarbeiter, überwiegend mit natur- oder ingenieurwissenschaftlicher Ausbildung, erarbeiten das jährliche Forschungsvolumen von 2,8 Milliarden Euro. Davon fallen 2,4 Milliarden Euro auf den Leistungsbereich Vertragsforschung.
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM
Gustav-Meyer-Allee 25
13355 Berlin
Telefon: +49 (30) 46403-100
Telefax: +49 (30) 46403-111
http://www.izm.fraunhofer.de
Presseansprechpartner
Telefon: +49 (30) 46403-279
Fax: +49 (30) 46403-650
E-Mail: georg.weigelt@izm.fraunhofer.de
Telefon: +49 (30) 46403-7995
E-Mail: Alethea.Vanessa.Zamora.Gomez@izm.fraunhofer.de