Architekturen, virtuelle ECUs usw. an, so
steigt die Komplexität der Diagnostik oder der Diagnose
von Fehlern und der Lokalisierung ihrer Grundursache exponentiell
an. Die Auswirkungen dieser Komplexität sind deutlich
zu erkennen bei denjenigen, die diese Fahrzeugtechnologien
verwalten und aktualisieren müssen (wie End-of-Line-
Fertigung oder OEM-Kundendienstanbieter). Dies konzentriert
sich insbesondere im Kundendienstbereich an der
Schnittstelle zum Kunden. Die Kundenerfahrung ist ein kritischer
Parameter für den Aufbau und Erhalt von Markentreue,
daher ist es wichtig, jegliche Ausfallzeiten von Fahrzeugen
auf ein Minimum zu beschränken.
Diese Komplexität steht im direkten Widerspruch zu den
wachsenden Anforderungen der Kunden und dem Wunsch
nach einer Reduzierung der Fahrzeugausfallzeiten. Früher
verfügte ein Kfz-Mechaniker über die Kenntnisse, die eine effektive
Reparatur des Fahrzeugs gestatteten. In komplexen
Umgebungen sind die Möglichkeiten dieser Fachkräfte trotz
ihres umfangreichen Know-Hows jedoch begrenzt. Letztendlich
beeinträchtigt dies die effektive Diagnose und somit die
Reparatur des Fahrzeugs.
Ein weiterer unbefriedigender Punkt bei modernen Fahrzeugen
ist der immer häufiger vorkommende Austausch nicht
fehlerhafter Teile. Dies wird üblicherweise als „No Fault
Found“ oder „No Trouble Found“ bezeichnet. Dies geschieht
dann, wenn ein Mechaniker ein Teil ersetzt, das eigentlich
nicht die Grundursache für das vom Kunden beanstandete
Problem war. Im Allgemeinen ist es in diesem Fall erforderlich,
dass der Kunde zum Händler zurückkehrt, was mit hoher
Wahrscheinlichkeit mit Unannehmlichkeiten verbunden ist,
die vermeidbar gewesen wären. Wenn es für das Fahrzeug
eine Herstellergarantie gibt, entstehen dem OEM unmittelbare
Kosten.
Die Problempunkte sind offensichtlich – hohe Garantiekosten,
geringe Kundenzufriedenheit usw., und dies alles
letztlich verursacht durch Fehldiagnosen. Solche Probleme
lassen sich nur entschärfen oder lösen, wenn effektive Diagnosen
durchgeführt werden. Zunehmende Komplexität erfordert
erweiterte Kenntnisse, Fähigkeiten und Erfahrungen
– und all dies verursacht (direkte oder indirekte) Kosten. Ein
Ansatz besteht darin, die Abhängigkeit von den Entscheidungen
eines Kfz-Mechanikers zu reduzieren und das Konzept
der geführten Diagnose einzuführen.
Sieht man sich moderne technische Konzepte wie merkmalbasierte Architekturen, virtuelle ECUs usw. an, so steigt die Komplexität der Diagnostik oder der Diagnose von Fehlern und der Lokalisierung ihrer Grundursache exponentiell an. Die Auswirkungen dieser Komplexität sind deutlich zu erkennen bei denjenigen, die diese Fahrzeugtechnologien verwalten und aktualisieren müssen (wie End-of-Line- Fertigung oder OEM-Kundendienstanbieter). Dies konzentriert sich insbesondere im Kundendienstbereich an der Schnittstelle zum Kunden. Die Kundenerfahrung ist ein kritischer Parameter für den Aufbau und Erhalt von Markentreue, daher ist es wichtig, jegliche Ausfallzeiten von Fahrzeugen auf ein Minimum zu beschränken.
Diese Komplexität steht im direkten Widerspruch zu den wachsenden Anforderungen der Kunden und dem Wunsch nach einer Reduzierung der Fahrzeugausfallzeiten. Früher verfügte ein Kfz-Mechaniker über die Kenntnisse, die eine effektive Reparatur des Fahrzeugs gestatteten. In komplexen Umgebungen sind die Möglichkeiten dieser Fachkräfte trotz ihres umfangreichen Know-Hows jedoch begrenzt. Letztendlich beeinträchtigt dies die effektive Diagnose und somit die Reparatur des Fahrzeugs.
Ein weiterer unbefriedigender Punkt bei modernen Fahrzeugen ist der immer häufiger vorkommende Austausch nicht fehlerhafter Teile. Dies wird üblicherweise als "No Fault Found" oder "No Trouble Found" bezeichnet. Dies geschieht dann, wenn ein Mechaniker ein Teil ersetzt, das eigentlich nicht die Grundursache für das vom Kunden beanstandete Problem war. Im Allgemeinen ist es in diesem Fall erforderlich, dass der Kunde zum Händler zurückkehrt, was mit hoher Wahrscheinlichkeit mit Unannehmlichkeiten verbunden ist, die vermeidbar gewesen wären. Wenn es für das Fahrzeug eine Herstellergarantie gibt, entstehen dem OEM unmittelbare Kosten.
Die Problempunkte sind offensichtlich – hohe Garantiekosten, geringe Kundenzufriedenheit usw., und dies alles letztlich verursacht durch Fehldiagnosen. Solche Probleme lassen sich nur entschärfen oder lösen, wenn effektive Diagnosen durchgeführt werden. Zunehmende Komplexität erfordert erweiterte Kenntnisse, Fähigkeiten und Erfahrungen – und all dies verursacht (direkte oder indirekte) Kosten. Ein Ansatz besteht darin, die Abhängigkeit von den Entscheidungen eines Kfz-Mechanikers zu reduzieren und das Konzept der geführten Diagnose einzuführen.
Geführte Diagnose
Geführte Diagnose nennt man gewöhnlich den Prozess der Diagnose einer Fehlergrundursache an einem Fahrzeug. Man beginnt mit einem Fehlerfall (zum Beispiel bestimmten Symptomen oder anderen Hinweisen). Der Mechaniker wird dann durch mehrere Tests geführt, die schließlich eine Schlussfolgerung zulassen, welche Komponenten ursächlich betroffen sind. Geführte Diagnosen haben sich über die Jahre weiterentwickelt. Es gibt verschiedene Methoden und Verfahrensweisen, die eine geführte Diagnose ausmachen:
– Prüfschritt-Diagnose – Die einfachste Form einer geführten Diagnose lässt sich als Ablauf einfacher Verfahrensschritte darstellen, der bei Befolgung (wahrscheinlich) zu einer korrekten Diagnose mechanischer Fehler führen wird.
– DTC-basierte Diagnose – Wenn ein elektrisches System beteiligt ist, ermöglicht die DTC-basierte Diagnose-Tests auf Basis der vorhandenen DTCs durchzuführen. Dabei kann es sich um einen langen, aufwendigen Prozess handeln, der u. a. von der Genauigkeit der Informationen zu den DTCs abhängt.
– Modellbasierte Diagnose – Zur Darstellung der technischen Systeme wird ein mathematisches Modell herangezogen.
– Netzwerkbasierte, geführte Diagnose – Dieses Konzept beruht auf der Idee, dass Modelle zur Darstellung eines digitalen Zwillings des Fahrzeugs gebaut werden und Informationen aus dem realen Fahrzeug auf das Modell übertragen werden können, was ein weit präziseres Bild ermöglicht, sodass die Diagnoseschritte mit diesen Informationen dynamischer und mit ständigen Anpassungen durchgeführt werden können.
Netzwerkbasierte Diagnose?
Der wesentliche Vorteil erweiterter Techniken wie der modell- und netzwerkbasierten Diagnostik liegt im Übergang von statischer zu dynamischer Diagnose. Eine statische Diagnose stützt sich auf eine große Menge vorbestimmter Daten und kann nur so genau sein, wie die Informationen, auf denen sie basiert. Dies ist vollkommen zweckmäßig, wenn der Fehler bekannt ist oder verstanden wird, setzt aber voraus, dass bestimmte Bedingungen erfüllt sind.
Die dynamische Diagnose verwendet hingegen ein Modell, das kontinuierlich angepasst wird. Die dem Modell zugeführten Fakten werden ständig aktualisiert, wenn neue Informationen hinzukommen oder bestimmte Bedingungen erfüllt sind oder ausgeschlossen werden.
Validierung und kontinuierliche Verbesserung
Das Hauptunterscheidungsmerkmal eines solchen Systems besteht in seiner Fähigkeit, fahrzeugtechnische Daten wirksam zu nutzen und sich mit der Zeit zu verbessern. Dies gilt insbesondere für dynamische, datengetriebene Diagnosesysteme. Genauso wichtig ist es jedoch, der Qualität der Daten im Modell vertrauen zu können. Ferner hat ein dynamisches System einen immanenten Vorteil. Die Leistungsfähigkeit der K-Grip Reasoning Engine ermöglicht die Entwicklung intelligenter Algorithmen, die einfache Lücken feststellen können, die ansonsten übersehen und möglicherweise nie entdeckt worden wären. Zum Beispiel:
– Überflüssige Teile – Ein Teil ist im Modell vorhanden, weist aber keine Verbindung auf. Dies bedeutet, dass sämtliche Störungsszenarien (zum Beispiel Symptome in Bezug auf die Komponente oder DTCs), die ansonsten mit einer Grundursache enden würden, nicht diagnostiziert werden. Dies hat "No Fault Found"-Ergebnisse zur Folge, die sich wiederum auf die Kundenzufriedenheit auswirken.
– Unvollständige Störungen – Eine oder mehrere Störungsszenarien (zum Beispiel spezifische Symptome) sind nicht vollständig. Dies wird im Allgemeinen als ein Pfad durch das Modell beschrieben, der nicht zu einer Grundursache führt.
Datenerfassung und -speicherung
Für einen OEM werden täglich tausende Fahrzeuge diagnostiziert.
Die Erfassung dieser Daten ist erforderich, um sowohl aktuelle Modellverknüpfungen zu validieren, als auch von neuen und unzusammenhängenden Verknüpfungen zu erfahren. Ein typischer (vereinfachter) Datenerfassungsprozess ist in Bild 1 zu sehen. Lokale Clients erfassen Daten und speichern Diagnosesitzungen. Diese werden dann asynchron einem Remote-Speichersystem zugeführt, das die Daten erfasst und verwaltet. Die Sitzungsverfolgungs-Engine kann optimiert werden, um Online/Offline-Szenarien zu verarbeiten und mehrere lokale Clients transparent nachzuverfolgen.
Das Volumen der gesammelten Daten ist signifikant. Bild 2 zeigt das Datenvolumen, das für alle Diagnosesitzungen eines typischen mittelgroßen OEM gesammelt würde.
Bei solchen Datenmengen ist es wichtig, dass das Format leicht zu interpretieren und gut zu verschlüsseln ist. Dies ermöglicht den Offline-Prozessoren, den Datenraum zu durchforsten und Fakten zu extrahieren, die dann für weitergehende Analysen genutzt werden können.
Die "Lernschleife"
Das Konzept der Lernschleife wird durch eine große Menge von Daten ermöglicht, die das System zusammenträgt. Nimmt man zum Beispiel ein Szenario, in dem plötzlich eine steigende Anzahl von Komponenten ersetzt wird, ohne dass dabei eine Störung gefunden wird. Mit den im System vorhandenen Daten ist es möglich, nicht erwartete Fehlergruppen ausfindig zu machen – und die Systemtechniker frühzeitig auf Probleme hinzuweisen. Dadurch kann die Ursache identifiziert und das Modell aktualisiert werden, um eine alternative Prüfung bereitzustellen, die den Mechaniker anweist, die "tatsächliche" ursächliche Komponente zu kontrollieren und die No-Fault-Found-Situation zu bereinigen.
Netzwerkbasierte Diagnose K-GRIP
KGRIP ist die netzwerkbasierte Diagnoselösung von KPIT. Ihre von Grund auf skalierbare Architektur macht KGRIP in Kombination mit einer hochmodernen Regel-Engine zur idealen Lösung. Unter anderem sind dabei folgende Fragen zu stellen:
– Lässt sich eine Diagnose für jede Komponente im System durchführen?
– Sind jeder Grundursache Symptome zugewiesen, d. h., lässt sich das Problem beschreiben, das sich für jede Komponente stellt?
– Gibt es irgendwelche Komponenten ohne Grundursache?
Die K-GRIP-Lösung stellt Tools bereit, die den Aufwand für die Validierung dieser Fragen deutlich verringern. Die Lösung umfasst Werkzeuge und Berichte, die es einem Mechaniker ermöglichen, das Modell zu untersuchen und Fehler jeglicher Art sowie die entsprechenden Fehlerbehebungen schnell zu identifizieren. W (oe)
»»www.kpit.com
KPIT Technologies GmbH
Frankfurter Ring 105b
80807 München
Telefon: +49 (89) 3229966-0
Telefax: +49 (89) 3229966-99
http://www.kpit.com
Telefon: +49 (89) 3229966-140
Fax: +49 (89) 3229966-999
E-Mail: stefanie.koehler@kpit.com